0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Seismic Performance of Drop-In Anchors in Concrete under Shear and Tension

Author(s):

ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 7, v. 14
Page(s): 2021
DOI: 10.3390/buildings14072021
Abstract:

This paper presents an experimental study conducted on the behavior of drop-in anchors in uncracked concrete slabs. Both seismic (cyclic) load tests and static load tests to collapse are performed on drop-in anchors subjected to tension or shear forces. Three different anchor sizes are subjected to seismic qualification testing, followed by a static load test to collapse. The test results confirm the capability of the tested anchors to sustain simulated pulsating seismic tension and shear loading with frequency ranges between 0.1 and 2.0 Hz. It was observed that no tension failure occurred at the end of the cyclic load tests for all the tested anchors, and their residual inelastic maximum displacement at the end of the cyclic tension test was relatively small. Moreover, the experimental results show that the anchors’ ultimate capacities are higher than those specified by the anchor manufacturer. Finally, the anchors’ experimental pullout shear capacities are compared with the failure prediction equations in the literature and design codes. It is found that the theoretical models provide a conservative prediction of the concrete breakout of anchors in tension compared to the experimental ultimate loads. The coefficient for pry-out strength (kcp) equal to 2 or slightly smaller than 2 is likely to predict a better pry-out capacity with the experimental results compared to the application of the high conservative value of kcp equal to 1, as given in the code.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10794984
  • Published on:
    01/09/2024
  • Last updated on:
    01/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine