Seismic Performance of Concrete Column Connection with Square-Upper-Circular-Lower Steel Tube for Antique Buildings
Author(s): |
Xianghong Sun
Qingwei Guo Yunpeng Xuan Bingxue Wu Jiabin Gao |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 24 March 2023, n. 4, v. 13 |
Page(s): | 916 |
DOI: | 10.3390/buildings13040916 |
Abstract: |
The antique building combines traditional design with contemporary technology, making it an important structural style. Columns, as a crucial structural component, directly affect how well the building functions as a whole. This paper proposes a new connection form with the upper square concrete-filled steel tube-lower circular concrete-filled steel tube (USCFST-LCCFST). This study investigates the seismic performance of the proposed connection form of the columns. First, the finite element software ABAQUS-2021 is used to simulate and analyze the connection forms of the upper square concrete-filled steel tube and lower circular reinforced concrete (USCFST-LCRC) and the upper square steel reinforced concrete and lower circular reinforced concrete (USSRC-LCRC) above the antique building, respectively, which confirms the rationality of the modeling method explored in this paper. Then, geometric modeling of the USCFST-LCCFST connection is performed using ABAQUS. Simulation results demonstrate the superior seismic performance of the proposed connection form. In addition, the influence law of steel tube yield strength and the ratio of upper and lower column linear stiffness on its seismic performance are analyzed and determined through the variational parameter analysis of the USCFST-LCCFST connection form. The steel tube yield strength of USCFST-LCCFST column connection components is recommended to be 355–420 MPa and the ratio of upper and lower column linear stiffness should be no less than 0.063. In order to ensure the good seismic performance of the connection, the steel tube yield strength and the ratio of upper and lower column stiffness should be efficiently controlled in the design of antique buildings’ USCFST-LCCFST column connection components. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
8.43 MB
- About this
data sheet - Reference-ID
10728339 - Published on:
30/05/2023 - Last updated on:
01/06/2023