0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Author(s):


Medium: journal article
Language(s): English
Published in: IOP Conference Series: Materials Science and Engineering, , n. 1, v. 870
Page(s): 012069
DOI: 10.1088/1757-899x/870/1/012069
Abstract:

The bridges that constructed in earthquake-prone areas perhaps subjected to sudden earthquake through their construction and service period. So, attentions should be pushed during bridge design specially, as they are one of the main civil infrastructures. The bridge piers are the main parts of bridges whether they are built across river or even as an express highway projects. This paper presented an experimental study of seismic performance of concrete bridge piers. Several important parameters have been studied such as acceleration response, seismic displacements, the bridge pier model settlement and the failure mechanism. Principles of physical modeling are used to fabricate two bridge pier models and shaking table (1-g tests) were performed under 0.82g waveform (i) Chamfered bridge pier built on saturated cohessionless soil (test-1) (ii) Oblong bridge pier built on saturated cohessionless soil(test-2). The output results included the acceleration response in term of the time acceleration and acceleration response spectra, failure mechanism during shacking, seismic displacement of the bridge pier model. The results show that the amplification in the acceleration is increases significantly at the top of the bridge pier. The seismic displacement is suddenly increased sharply due to strong motion. Overturning failure mechanism about the heel of the bridge pier has been observed in test-1 and test-2.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1088/1757-899x/870/1/012069.
  • About this
    data sheet
  • Reference-ID
    10675172
  • Published on:
    28/05/2022
  • Last updated on:
    28/05/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine