0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Seismic Energy Dissipation and Hysteresis Performances of Distinctly Shaped Steel-Reinforced Concrete Column–Beam Joints under Cyclic Loading

Author(s):

ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 14
Page(s): 2777
DOI: 10.3390/buildings14092777
Abstract:

The distinctly shaped steel-reinforced concrete (SRC) column–beam framing system offers an innovative and tailored structural solution that combines load-bearing capabilities with architectural esthetics. This study introduces an innovative joint design methodology, focusing on examining the seismic responsiveness of the uniquely designed SRC columns when interconnected with reinforced concrete (RC) beams, subjected to bidirectional low cycle loading patterns through precisely calibrated pseudo-static evaluations with varied stirrup spacing. A comparative assessment was undertaken, comparing the joints of SRC test specimens with their RC counterparts, ensuring equivalency in steel and reinforcement area to maintain fairness. The evaluation encompassed a thorough examination of hysteresis loop backbone curves, as well as load–strain hysteresis patterns. It was found that the specimens incorporating structural steel and tubes demonstrated enhanced energy dissipation capabilities, surpassing other specimens in this critical performance aspect. An in-depth analysis was also conducted by comparing the ductility coefficient and the equivalent viscous damping coefficient to evaluate the joints’ performance in dissipating energy, coupled with a thorough examination of their stiffness deterioration behavior. The conclusion is that the energy dissipation capacity and stiffness degradation of distinctly shaped SRC column joints are superior to those of conventional, distinctly shaped concrete column joints, indicating promising application prospects.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10799866
  • Published on:
    23/09/2024
  • Last updated on:
    23/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine