0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Seismic Ductility Reduction of Flexural-type Structures with Vertical Irregularities

Author(s):


Medium: journal article
Language(s): English
Published in: The Open Civil Engineering Journal, , n. 1, v. 10
Page(s): 1-11
DOI: 10.2174/1874149501610010001
Abstract:

Seismic ductility reduction factors for flexural-type structures with vertical irregularities subjected to pulse-like and non-pulse-like ground motions are investigated in this paper. By establishing various multi-node flexural cantilever-column models, the ductility reduction factor of vertically irregular structures is studied by modifying the ductility reduction factor of irregular structures. The effects of various factors such as ductility level, irregular ratio and pulse-like earthquake excitation on modification coefficient are also explored. The analysis results reveal that: 1) the modification coefficient decreases with smaller irregularity ratio; 2) ductility reduction factors for vertically irregular structures are significantly smaller than those of regular structures; 3) ductility level exerts a certain influence on ductility reduction factor without an obvious trend; and 4) the modification coefficient under pulse-like excitation is smaller than those from non-pulse-like motions and the influence of pulse-like earthquake is coupled with irregularity ratio. This paper concludes with the statistical outcomes based on average of results and recommends modified factors for practice uses.

Copyright: © 2016 Weifeng Zhao et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10175434
  • Published on:
    30/12/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine