0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Seismic Analysis of Historical Urban Walls: Application to the Volterra Case Study

Author(s): (Department of Civil, Environmental Engineering and Architecture, University of Cagliari, 09123 Cagliari, Italy)
(Department of Civil, Environmental Engineering and Architecture, University of Cagliari, 09123 Cagliari, Italy)
ORCID (Department of Civil, Environmental Engineering and Architecture, University of Cagliari, 09123 Cagliari, Italy)
Medium: journal article
Language(s): English
Published in: Infrastructures, , n. 2, v. 8
Page(s): 18
DOI: 10.3390/infrastructures8020018
Abstract:

Several Italian cities are characterized by the presence of centuries-old historic walls, which have a cultural heritage value and, due to their structural role as a retaining wall, often influence the safety of adjacent buildings and infrastructure. Ancient urban walls are increasingly subject to instability and collapse phenomena, because the greater frequency of extreme meteoric events aggravates the static condition of the walls and of the wall–soil system. Since the seismic risk in the contexts in which the historical urban walls are located is often medium-high, it is advisable to evaluate the influence of soil moisture on the seismic response of the soil–structure system. In this paper, the seismic vulnerability of historical urban walls was examined through considering scenarios of both dry and wet soil, in order to evaluate the seismic response of the structure as a function of soil imbibition. Seismic vulnerability analyses were carried out on the case study of the historical urban masonry walls of Volterra (Italy), which have been affected by two major collapses in the last ten years. Seismic vulnerability was assessed by means of the limit equilibrium method and the finite element method, and through adopting proper soil imbibition models. The results highlight which sections of the walls are at greater seismic risk due to the presence of soil moisture, as well as the influence of soil imbibition on the structural safety and failure mechanism.

Copyright: © 2023 the Authors. Licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10722753
  • Published on:
    22/04/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine