0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Scientometric Analysis on Climate Resilient Retrofit of Residential Buildings

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 5, v. 15
Page(s): 652
DOI: 10.3390/buildings15050652
Abstract:

This study aims to understand the impacts of climate change and extreme climate events on residential buildings and explore how existing buildings can be adapted to resist these negative impacts. A bibliometric and scientometric analysis was conducted on resilient residential retrofits to highlight the prevalent themes, critical directions, and gaps in the literature, which can inform future research directions. The resilient residential retrofit publications from 2012 to 2023 were retrieved and analyzed using text-mining software. In all, 4011 publications and 2623 patents were identified. The analysis revealed an average annual publication growth rate of 11%, indicating increasing interest in resilient residential retrofits. Four central topics were explored specifically throughout the study, as they are known to be the most prevalent climate risks for residential buildings: Overheating, Flooding, Wind, and Wildfires. The research trends analysis reveals that emerging interests in resilient residential retrofit encompass nature-based solutions, energy efficiency, thermal comfort, microclimates, durability, post-disaster recovery, and extreme events. Nearly half of the publications reference urban context and over one-third mention costs. The building envelope is the most frequently discussed housing component. Although energy retrofit was not the primary focus of this study and was not specifically searched for, energy concerns were still prevalent in the dataset, highlighting the critical importance of energy efficiency and management in resilient residential retrofits. The analysis of R&D momentum revealed several research gaps. Despite high growth rates, there are low publication rates on key topics such as durability, holistic approaches, microclimates, nature-based solutions, and traditional homes, to name a few. These areas could benefit from further research in the context of climate-resilient residential retrofits. Additionally, the analysis indicates a lack of publications on cross-themed research specific to rural and suburban settings. There are also few studies addressing combinations of themes, such as overheating in high-rise buildings, wildfires in Nordic climates, and flooding risk in smart homes within the scope of resilient residential retrofits. The United States leads in publication output, followed by China and the UK, with China dominating the patent landscape. This scientometric analysis provides a comprehensive overview of the research landscape in resilient residential retrofit, systematically maps and analyzes the vast amount of research output, and identifies the key trends and gaps, enabling us to see a type of quantitative snapshot of the research in a field at a certain point in time and thus providing a unique point of view. This study helps stakeholders prioritize efforts and resources effectively for guiding future research, funding decisions, informing policy decisions, and ultimately enhancing the resilience of residential buildings to climate-related challenges.

Copyright: © 2025 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10820716
  • Published on:
    11/03/2025
  • Last updated on:
    11/03/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine