0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Sample Preparation Methods Affect Engineering Characteristic Tests of Municipal Solid Waste

Author(s):


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-13
DOI: 10.1155/2020/9280561
Abstract:

The output of municipal solid waste (MSW) has sharply increased over the recent years, which induces many severe problems (environmental pollution, deteriorating human health, and increased land occupation). Engineering parameters form the research basis for MSW treatment, which can be greatly influenced by the applied sample preparation methods. Currently, the preparation method of MSW samples mostly refers to the geotechnical test standard. The suitability and accuracy of this method for MSW are less studied, especially when considering biodegradation, so further research is needed. Depending on whether the material is dried or remains wet during preparation, the samples made by traditional geotechnical test standards are referred to as dry method samples or wet method samples, respectively. To study the influence of the sample preparation methods on the MSW engineering properties of MSW, the compression tests, direct shear tests, and biodegradation compression tests were conducted for both types of samples (dry and wet). The results show that the data dispersion of the wet method samples is stronger. The average test data variance of wet samples was 1.43–8.85 times higher than that of dry samples. In both the direct shear test and the compression test, the differences in engineering parameters caused by the sample preparation method were less than 12.3% and 8.9%, respectively. In biodegradation compression tests, the difference in engineering parameters reached up to 33.7%. In general, the dry method is preferred for tests that do not consider biodegradation, while the wet method is more suitable for tests that consider biodegradation. The research can be used as a reference toward improving the simplicity and accuracy of MSW tests.

Copyright: © 2020 Dequan Kong et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10426553
  • Published on:
    13/07/2020
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine