0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Risk Assessment of Subway Station Fire By Using a Bayesian Network-Based Scenario Evolution Model

Author(s):



Medium: journal article
Language(s): English
Published in: Journal of Civil Engineering and Management, , n. 3, v. 30
Page(s): 279-294
DOI: 10.3846/jcem.2024.20846
Abstract:

Subway station fires frequently result in massive casualties, economic losses and even social panic due to the massive passenger flow, semiconfined space and limited conditions for escape and smoke emissions. The combination of different states of fire hazard factors increases the uncertainty and complexity of the evolution path of subway station fires and causes difficulty in assessing fire risk. Traditional methods cannot describe the development process of subway station fires, and thus, cannot assess fire risk under different fire scenarios. To realise scenario-based fire risk assessment, the elements that correspond to each scenario state during fire development in subway stations are identified in this study to explore the intrinsic driving force of fire evolution. Accordingly, a fire scenario evolution model of subway stations is constructed. Then, a Bayesian network is adopted to construct a scenario evolution probability calculation model for calculating the occurrence probability of each scenario state during subway station fire development and identifying critical scenario elements that promote fire evolution. Xi’an subway station system is used as a case to illustrate the application of Bayesian network-based scenario evolution model, providing a practical management tool for fire safety managers. The method adopted in this study enables managers to predict fire risk in each scenario and understand the evolution path of subway station fire, supporting the establishment of fire response strategies based on “scenario–response” planning.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.3846/jcem.2024.20846.
  • About this
    data sheet
  • Reference-ID
    10774195
  • Published on:
    29/04/2024
  • Last updated on:
    29/04/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine