A Review on the Effects of Waste Textile Polymer Fiber on Concrete Strength: Exploring the Key Parameters
Author(s): |
Soorya Sasi
Paul Joseph Robert Haigh Malindu Sandanayake Zora Vrcelj Ehsan Yaghoubi |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 24 April 2024, n. 5, v. 14 |
Page(s): | 1486 |
DOI: | 10.3390/buildings14051486 |
Abstract: |
The construction industry is one of the largest users of natural resources and can, thus, lead to significant environmental issues. Therefore, there is elevated interest worldwide in developing sustainable construction materials and techniques that can reduce these associated environmental impacts. In this context, one substantial area of focus is the incorporation of textile waste in construction materials, such as concrete. Textile waste is generated in large quantities from the production stage through to the consumption and end-of-life disposal periods. Hence, it is prudent to devise effective ways of recycling this waste, which can, in turn, reduce the environmental implications of textile production and cut down the quantity of waste sent to landfills. Furthermore, fibers obtained from recycled textile waste can be used to reinforce concrete, thus replacing the need for synthetic fibers. This review focuses on the use and effects of incorporating polymer fibers from recycled textile waste in concrete and the use of textile polymer fiber in the construction of various structures, and challenges in the use of recycled fibers in concrete and the parameters affecting the resultant strength of concrete structures, such as stress transfer, crack control, bond strength, and spalling, etc., are discussed. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
1.73 MB
- About this
data sheet - Reference-ID
10787494 - Published on:
20/06/2024 - Last updated on:
20/06/2024