0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Review on Gaps and Challenges in Prediction Outdoor Thermal Comfort Indices: Leveraging Industry 4.0 and ‘Knowledge Translation’

Author(s): ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 14
Page(s): 879
DOI: 10.3390/buildings14040879
Abstract:

The current outdoor thermal comfort index assessment is either based on thermal sensation votes collected through field surveys/questionnaires or using equations fundamentally backed by thermodynamics, such as the widely used UTCI and PET indices. The predictive ability of all methods suffers from discrepancies as multi-sensory attributes, cultural, emotional, and psychological cognition factors are ignored. These factors are proven to influence the thermal sensation and duration people spend outdoors, and are equally prominent factors as air temperature, solar radiation, and relative humidity. The studies that adopted machine learning models, such as Artificial Neural Networks (ANNs), concentrated on improving the predictive capability of PET, thereby making the field of Artificial Intelligence (AI) domain underexplored. Furthermore, universally adopted outdoor thermal comfort indices under-predict a neutral thermal range, for a reason that is linked to the fact that all indices were validated on European/American subjects living in temperate, cold regions. The review highlighted gaps and challenges in outdoor thermal comfort prediction accuracy by comparing traditional methods and Industry 4.0. Additionally, a further recommendation to improve prediction accuracy by exploiting Industry 4.0 (machine learning, artificial reality, brain–computer interface, geo-spatial digital twin) is examined through Knowledge Translation.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773417
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine