^ A Review of Cracking Behavior and Mechanism in Clayey Soils Related to Desiccation | Structurae
0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A Review of Cracking Behavior and Mechanism in Clayey Soils Related to Desiccation

Author(s):


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-12
DOI: 10.1155/2020/8880873
Abstract:

Cracks in clayey soils are common during desiccation. The presence of cracks significantly alters the mechanical and hydraulic properties of soils. The objective of this article is to summarize the works on cracking behavior and mechanism in clayey soils related to desiccation. Historical field investigations, laboratory experimentations, identified mechanisms, and numerical approaches for modeling the process of cracking during desiccation are discussed. The experimental approaches for interpreting the mechanisms of cracking are systematically summarized and comprehensively reviewed based on the in situ observations and laboratory experimentations from the literature. The soil mechanics-based approaches resumed in this article according to the fracture mechanics theory and numerical results highlight the cracking development mechanism. Concerning the plasticity characteristics of clayey soils, researches on soil fracture mechanics should be paid more attention. More in situ experimentations and numerical researches are suggested for future researches to better understand the cracking behavior and mechanism in clayey soils related to desiccation.

Copyright: © 2020 Xin Wei et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10430551
  • Published on:
    17/08/2020
  • Last updated on:
    02/06/2021