0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

The Response and Instability of Cross-Rope Suspension Towers Under Harmonic Excitation

Author(s):



Medium: journal article
Language(s): English
Published in: International Journal of Structural Stability and Dynamics, , n. 10, v. 17
Page(s): 1750124
DOI: 10.1142/s0219455417501243
Abstract:

The galloping or vortex-induced vibration of transmission lines will lead to a periodic excitations to the masts of the cross-rope suspension tower (CRST). The mast of the CRST is modeled as a straight beam with an elastic support subjected to a pulsating axial force on the top, which will change the stiffness of the mast, thereby resulting in produce harmonic excitation and instability. The dynamic characteristics of the system are investigated, which show that the bending frequency of the CRST decreases linearly with increase in axial static load, while it increases nonlinearly with the increase in boundary stiffness. Then, the method of multiple scales is adopted to analyze the vibration. It is found that the wind load on the mast brings primary resonance, but has no effects on instability. In addition, the steady state solution of the primary resonance is obtained by the polar form of the reduced amplitude modulation equations (RAMEs), with the effects of the following parameters on the vibration amplitude of the mast studied: the prestressing load in the guy, magnitude of the dynamic force, detuning parameter and wind load. Finally, the instability regions of two cases ([Formula: see text] near [Formula: see text] and [Formula: see text] near [Formula: see text]) are studied by the Cartesian form of the RAMEs, with focus on the influence of the axial harmonic load produced by the galloping of the transmission lines on the instability area. It is observed that the magnitude of excitation frequency of the dynamic force in the range of instability region becomes larger until the spring stiffness is increased up to a certain value.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1142/s0219455417501243.
  • About this
    data sheet
  • Reference-ID
    10352316
  • Published on:
    14/08/2019
  • Last updated on:
    14/08/2019
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine