Research Progress on Effects of Antifreeze Components, Nanoparticles and Pre-Curing on the Properties of Low-Temperature Curing Materials
Author(s): |
Xianhua Yao
Mingduo Wan Yongsheng Zhu Lihua Niu Xiaoxiang Ji Shengqiang Chen Wei He Linyan Han |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 15 January 2025, n. 2, v. 15 |
Page(s): | 223 |
DOI: | 10.3390/buildings15020223 |
Abstract: |
There are long periods of winter construction in China’s eastern and western Alpine regions. The decreased construction temperature adversely affects the workability, mechanical properties, and durability of cement-based materials and alkali-activated materials. Under low-temperature curing conditions, the hydration reaction of these materials slows down, resulting in limited strength development and reduced durability. In response to this problem, researchers have summarized three measures to improve performance: the use of anti-freezing components, nanoparticles, and pre-curing. The effects of anti-freezing components on the mechanical properties and micro-mechanism changes of Portland cement, sulphoaluminate cement, magnesium phosphate cement-based materials, and alkali-activated cementitious materials are organized. Additionally, the improvement of macro-micro properties in cement-based materials through mineral admixtures, nanoparticles, and hydrated calcium silicate seeds is summarized. The influence of pre-curing on the mechanical properties of cement-based materials is analyzed, focusing on the relationship between pre-curing time and the critical strength of frost resistance. Finally, existing research challenges are summarized, and future research directions are proposed, providing valuable references for the further development of materials and engineering applications. |
Copyright: | © 2025 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
6.24 MB
- About this
data sheet - Reference-ID
10815905 - Published on:
03/02/2025 - Last updated on:
03/02/2025