0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Research on Vibration Comfort in Modular Construction

Author(s):


ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 14
Page(s): 4068
DOI: 10.3390/buildings14124068
Abstract:

This paper focuses on the vibration problem of the first modular school construction project in Guangming District, Shenzhen. Field tests were conducted on modular classrooms under jumping scenarios to obtain vibration acceleration time–history curves, and the fundamental frequency of the modular classroom floors was determined using the Fast Fourier Transform (FFT). Subsequently, tests under walking and running scenarios were carried out to collect vibration acceleration time–history curves. By comparing the measured peak vibration accelerations with the limits specified in existing standards, potential vibration comfort issues in the modular classrooms were identified. A FES (finite element simulation) approach was employed to develop a comprehensive model of the modular school under investigation and to analyze its vibration comfort across the tested scenarios. This modeling effort served to validate the accuracy of the experimental measurements obtained from field testing. Finally, the vibration comfort of the modular classroom floors was further analyzed using finite element simulations. The results indicate that the modular classroom floors have significant vibration comfort issues.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10810653
  • Published on:
    17/01/2025
  • Last updated on:
    17/01/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine