0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Research on Tunnel Surrounding Rock Failure and Energy Dissipation Based on Cyclic Impact and Shear Loading

Author(s):
ORCID
ORCID
ORCID


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-15
DOI: 10.1155/2021/8838695
Abstract:

Aiming at the cyclic impact deformation and failure of tunnel surrounding rock under shear stress, a self-developed rotation-impact simulation test platform was used to determine the number of failures, stress-strain curves, and energy in the process of cyclic impact failure. The failure process of rock under different impact velocities and shear stresses has been systematically studied. Results show that, under the same impact speed, the shear stress will increase with the increase in the rotation speed, but an upper limit will exist. When the rotation speed reaches this upper limit, the shear stress will no longer increase. The presence of shear stress will reduce the number of impacts required for rock failure. When the impact speed is 7.2 m/s, the number of impacts at the maximum rotation speed is 60% of the static state. When the impact velocity is 16.8 m/s, this value is only 33.3%. At the same impact velocity, the stress-strain curves under different rotation speeds do not change significantly, but with the increase in the rotation speed, the slope of the elastic stage of the stress-strain curve gradually decreases, and the corresponding stress of the rock sample decreases when the maximum strain is reached. With the increase in shear stress, the crushing specific energy required for rock failure gradually decreases. The greater the impact velocity, the more obvious the impact of shear stress on energy dissipation. In the tunnel process, when the surrounding rock is subjected to impact loads from different directions, only the axial strain analysis will have certain safety hazards, and timely support and reinforcement work are required.

Copyright: © Yu Ding et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10613205
  • Published on:
    09/07/2021
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine