Research on the Shear Performance of Cold-Formed Thin-Walled Steel-Glued Laminated Wood Composite Beams
Author(s): |
Haixu Yang
Yue Guo Haibiao Wang Zihang Jiang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 22 November 2023, n. 12, v. 13 |
Page(s): | 2903 |
DOI: | 10.3390/buildings13122903 |
Abstract: |
This paper proposes a new type of composite box beam combined with cold-formed thin-walled steel and glued laminated timber to develop green building structures while improving the load-carrying capacity of a single steel girder and glued timber girder. Two composite beams composed of laminated timber and Q235 cold-formed thin-walled steel were designed and fabricated. Then, the shear performance test with quadratic loading was carried out to analyze the load carrying capacity, damage modes, and deformation characteristics of the test beams, as well as their influencing factors. Subsequently, a finite element model of the composite beam was established, and the loading mode was the same as that of the test to further study the parameters affecting the shear performance of the composite beam. The results of the study indicate that steel and glued timber in composite beams connected by adhesive bonding can work and deform together under load and each give full play to its material properties, especially the composite beams, which exhibit higher shear strength than a steel or timber beam. The effects of parameters such as steel cross-sectional area, shear span ratio, steel skeleton form, and steel cross-sectional strength on the shear capacity of the composite beams were observed, among which the shear span ratio had the greatest effect on the shear capacity of the composite beams. The shear capacity decreased by 14.3% and 19.5% when the shear span ratio was increased from 1.5 to 2.0 and 2.5, respectively. The shear capacity of the combined composite beams increased by 10.6%, 6.3%, and 5.8% when the thickness was increased from 1.5 mm to 2.0 mm, 2.5 mm, and 3.0 mm, respectively. When the combination of the steel cross-section was a box beam, the overall shear-bearing capacity could be increased by 12% compared with the “I” type composite beam, although its shear stiffness was close to that of the “I” section composite beam. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
9.43 MB
- About this
data sheet - Reference-ID
10753416 - Published on:
14/01/2024 - Last updated on:
07/02/2024