0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Research on the Method of Prestressing Tendon Layout for Large-Span Prestressed Components Continuous Rigid Frame Bridge Based on “Zero Bending Moment Dead Load Theory”

Author(s):






Medium: journal article
Language(s): English
Published in: Buildings, , n. 6, v. 14
Page(s): 1588
DOI: 10.3390/buildings14061588
Abstract:

Based on the theory of zero bending moment under constant load, various optimization methods exist for the top beam of large-span continuous rigid frame bridges. These include achieving zero bending moment at the root of the cantilever beam, at the control stage section, and through the zero deflection method. This study aims to explore the methods and effects of optimizing roof beam design using the constant load zero bending moment method and the “three group bundle method”. Using finite element modeling, the total number and eccentricity of prestressed tendons required for each suspended pouring block are determined. Additionally, the “three group beam matching method” is employed to adjust the steel beam, adhering to the design concept of “large cantilever beam matching and small cantilever beam matching”, to achieve a reasonable configuration of the top plate beam. Through specific engineering examples, the results demonstrate that utilizing the constant load zero moment method and the “three group bundle method” can significantly enhance the structural performance and economy of large-span continuous rigid frame bridges. Moreover, it offers practical operability, providing an important reference basis for similar project designs.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10787617
  • Published on:
    20/06/2024
  • Last updated on:
    20/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine