0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Research on Key Technologies of Floor Heave Control in Soft Rock Roadway

Author(s):


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-13
DOI: 10.1155/2020/8857873
Abstract:

Aiming at the floor heave of transportation concentrated roadway on the West Wing (TCRWW) of No. 1 Coal Seam in Danhou Mine, it affects underground coal transportation and mine safety production. First, the lithology and structure of the roadway floor were sampled and tested, and it was found that it contained clay minerals with high hydrophilicity. Secondly, starting from the mechanical mechanism of the roadway floor, a mechanical model of the roadway floor is established. By increasing the floor anchoring layer thicknessm1, the floor deformation can be effectively controlled to guarantee the stability of the surrounding rock of the roadway. Thirdly, the FLAC3D numerical simulation analysis of the roadway deformation under the existing support scheme of the roadway is consistent with the measured deformation results on-site, thereby revealing that the existing support scheme and parameters are not reasonable. Finally, the unreasonable support scheme and parameters of the existing roadway were disclosed, and an antifloor arch structure was proposed: “quicklime bottom paving + prestressed anchor cable + concrete arc beam + metal mesh + C20 high-strength concrete filling.” This floor treatment plan is adopted for the industrial verification of the test section of TCRWW. Engineering practice shows that the optimized roadway support scheme has a better effect on the deformation control of the roof-to-floor and rib-to-rib, thereby effectively ensuring safe and efficient production in the mine.

Copyright: © Lei Shi et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10433997
  • Published on:
    11/09/2020
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine