Research and Model Prediction on the Performance of Recycled Brick Powder Foam Concrete
Author(s): |
Hongyang Xie
Jianjun Dong Yong Deng Yiwen Dai |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2022, v. 2022 |
Page(s): | 1-14 |
DOI: | 10.1155/2022/2908616 |
Abstract: |
In order to achieve resource conservation, protect the environment and realize the sustainable development of the construction industry, the low energy resource utilization of construction waste was explored. In this paper, the effect of air bubble swarm admixture, recycled brick powder admixture, water to material ratio, and HPMC content on the physical and mechanical properties of recycled brick powder foam concrete was investigated by conducting a 4-factor, 5-level orthogonal test with recycled brick powder as fine aggregate, and the effect of each factor on the physical and mechanical properties of recycled brick powder foam concrete was derived, and the optimum ratio of recycled brick powder foam concrete was determined by analysing the specific strength. Five machine learning models, namely, back propagation neural network improved by particle swarm optimization (PSO-BP), support vector machine (SVM), multiple linear regression (MLR), random forest (RF), and back propagation neural network (BP), were used to predict the compressive strength of recycled brick powder foam concrete, and the PSO-BP model was found to have obvious advantages in terms of prediction accuracy and model stability. The experimental results and prediction models can provide experimental and theoretical references for the research and application of recycled brick powder foam concrete. |
Copyright: | © Hongyang Xie et al. et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.81 MB
- About this
data sheet - Reference-ID
10663878 - Published on:
09/05/2022 - Last updated on:
01/06/2022