0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Repairing and Strengthening of Damaged RC Columns Using Thin Concrete Jacketing

Author(s):



Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2019
Page(s): 1-16
DOI: 10.1155/2019/2987412
Abstract:

This research aims to investigate the efficiency of repairing damaged concrete columns using thin concrete jacketing. The experimental program included casting of nine reference 300 mm long reinforced concrete column specimens: three specimens had a cross-sectional dimension of 100 mm × 100 mm, three specimens had a cross-sectional dimension of 150 mm × 150 mm, and three specimens had a cross-sectional dimension of 170 mm × 170 mm. A total of 36 identical column cores were cast with similar cross sections of 100 mm × 100 mm and a height of 300 mm. These cores were damaged by loading them with approximately 90% of their actual ultimate axial load capacities. Then, the columns were repaired and strengthened by applying two jacketing materials, which were 25 and 35 mm thick, on all four sides. Group 1 consisted of 18 column cores jacketed by normal strength concrete with a maximum aggregate size of 4.75 mm and steel reinforcement, whereas Group 2 consisted of 18 column cores jacketed using ultrahigh-performance fibre-reinforced self-compacting concrete with steel reinforcement. The experimental program showed that the Group 1 specimens had ultimate load capacities more than twice those of the unjacketed reference columns and the same axial capacity as the monolithically cast reference columns. The Group 2 specimens showed a significant increase in ultimate load capacity, which was approximately 3 times that of the unjacketed reference column and 1.86 times that of the monolithically cast reference columns. Moreover, using the shear studs was found to be the most effective among the three surface preparation techniques.

Copyright: © 2019 Bassam A. Tayeh et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10315124
  • Published on:
    24/06/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine