0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Reliability Analysis via an Optimal Covariance Matrix Adaptation Evolution Strategy: Emphasis on Applications in Civil Engineering

Author(s):


Medium: journal article
Language(s): English
Published in: Periodica Polytechnica Civil Engineering
DOI: 10.3311/ppci.15793
Abstract:

In this paper, a reliability-based optimization approach is applied using a recently proposed CMA-ES with optimal covariance update and storage complexity. Cholesky-CMA-ES gives a significant increase in optimization speed and reduces the runtime complexity of the standard CMA-ES. The reliability index is the shortest distance between the surface of Limit-State Function (LSF) and the origin of the standard normal space. Hence, finding the reliability index can be expressed as a constrained optimization problem. To verify the concept and test the feasibility of this algorithm, several numerical examples consisting of mathematical and highly nonlinear civil engineering problems are investigated. The reliability indexes obtained agree reasonably well with reported values from some existing approximation methods and Monte Carlo simulation.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.3311/ppci.15793.
  • About this
    data sheet
  • Reference-ID
    10536372
  • Published on:
    01/01/2021
  • Last updated on:
    19/02/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine