0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Regional climate change adaptation planning: a case study on single-story wooden-frame residential buildings vulnerable to hurricane winds in selected US coastal locations

Author(s):

Medium: journal article
Language(s): English
Published in: Frontiers in Built Environment, , v. 10
DOI: 10.3389/fbuil.2024.1273311
Abstract:

The projected increase in sea surface temperature due to climate change is expected to substantially intensify future hurricanes. Wooden light-frame residential buildings are particularly vulnerable to hurricane damage, and their risk is expected to increase due to heightened exposure and intensifying hurricanes. Therefore, adaptation strategies need to be planned to reduce damage to such buildings while considering the impact of climate change on hurricanes. This study investigates the effectiveness of various climate change adaptation strategies for coastal wood-frame single-story residential buildings and demonstrates how these strategies can be planned. The study considers the four Representative Concentration Pathways (RCPs) proposed by the IPCC to investigate the impact of climate change on wind hazard and losses. Additionally, three locations in the coastal United States of varying sizes, exposure, and hurricane hazard levels are considered: Harris County, Texas; Mobile County, Alabama; and Miami-Dade County, Florida. The results show that the increase in wind speeds and losses will be non-linear with time. All considered adaptation strategies decreased losses, with some able to completely counter the increasing losses even under high emission scenarios. Investigating the effectiveness of adaptive measures can guide stakeholders in allocating funds and efforts for hurricane risk management and enhancing community resilience.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.3389/fbuil.2024.1273311.
  • About this
    data sheet
  • Reference-ID
    10776294
  • Published on:
    29/04/2024
  • Last updated on:
    29/04/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine