0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Recycling of Oily Sludge as a Roadbed Material Utilizing Phosphogypsum-Based Cementitious Materials

Author(s):


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2019
Page(s): 1-10
DOI: 10.1155/2019/6280715
Abstract:

Oily sludge is a hazardous waste containing emulsified petroleum hydrocarbons, water, heavy metals, and solid particles. The objective of this work is to employ solidification/stabilization (S/S) techniques to utilize oily sludge as a roadbed material with ordinary Portland cement (OPC), fly ash (FA), and silica fume (SF) as binders and phosphogypsum (PG) as a stabilizer. The efficacy of the S/S process is assessed mainly through an unconfined compressive strength (UCS) test and a toxicity leaching test. Road performance, including water stability, freeze-thaw resistance, and volume stability, is also tested on the solidified samples. The mineralogical compositions, microstructures, and pore structure are characterized through X-ray diffractometry (XRD), scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP). The results show that the addition of 20% binders (OPC : FA : SF = 1 : 0.7 : 0.8) in combination with phosphogypsum to the oily sludge not only increases the 28-day compressive strength of the solidified samples and remarkably decreases the release of heavy metals but also refines the pore structure and compacts the microstructure. The solidified body had sufficient strength and good water stability performance, freeze-thaw resistance, and volumetric stability. This solidification/stabilization (S/S) process, which combines oily sludge treatment and phosphogypsum resource utilization, significantly enhances environmental protection and renders the solidified product economically profitable.

Copyright: © 2019 Wei Xiao et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10314302
  • Published on:
    07/06/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine