0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Author(s): ORCID
ORCID
ORCID
ORCID


ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 1, v. 12
Page(s): 17
DOI: 10.3390/buildings12010017
Abstract:

Cigarettes are one of the favoured commodities on our planet. However, the annual consumption of 5.7 trillion cigarettes and 75% littering rate results in cigarette butts (CBs) being one of the most critical environmental issues. The leachate of heavy metals and toxic chemicals is polluting our ecosystem and threatening the wildlife species. Therefore, it is crucial to find effective and efficient recycling methods to solve the growing CB waste issue. In this study, unglazed fired ceramic tiles were manufactured with 0%, 0.5%, 1.0%, and 1.5% shredded CBs by dry mass to investigate the feasibility of the proposed sustainable recycling method. The chemical and mineralogical characterisation, density, shrinkage, bulk density, breaking strength, water absorption, and modulus of rupture were investigated and compared with the Australian Standards for ceramic tiles (AS 4459). The results revealed that tiles incorporating 0.5% CBs by mass demonstrated the greatest performance compared to the other mixtures. The water absorption for all tile–CB mixtures was found to be greater than 10%, with a positive growth tendency. The addition of 0.5% CBs by mass slightly improved flexural strength from 15.56 MPa for control samples to 16.63 MPa. Tiles containing 0.5% CBs by mass satisfied the modulus of rupture and water absorption limits for group III class according to the Australian Standards (AS 13006), and they may be suitable to be used as wall tiles. The result of a simulation equation predicts that an energy savings of up to 7.79% is achievable during the firing process for ceramic tiles incorporating 1% CBs by mass.

Copyright: © 2021 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10648335
  • Published on:
    07/01/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine