0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Railway bearing and cardan shaft fault diagnosis via an improved morphological filter

Author(s):



Medium: journal article
Language(s): English
Published in: Structural Health Monitoring, , n. 5, v. 19
Page(s): 1471-1486
DOI: 10.1177/1475921719886067
Abstract:

Railway faults are usually observed as impulses in the vibration signal, but they are mostly immersed in noise. To effectively remove noise and identify the impulses, an improved morphological filter is proposed in this article. The proposal focuses on two aspects: a novel gradient convolution operator is proposed for feature extraction, and a new fault sensitivity measurement algorithm is proposed for scale selection because a morphological filter’s effectiveness is mainly determined by these two elements. The performance of the improved morphological filter is evaluated with real vibration signals measured from train’s axle bearings and cardan shafts. From the analysis of three sets of railway faults, the results indicate that the proposed morphological filter effectively detects the faults. Compared with three reported morphological filters, the proposed method has better diagnosis effectiveness.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1177/1475921719886067.
  • About this
    data sheet
  • Reference-ID
    10562368
  • Published on:
    11/02/2021
  • Last updated on:
    19/02/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine