• DE
  • EN
  • FR
  • International Database and Gallery of Structures


R-function Theory for Bending Problem of Shallow Spherical Shells with Polygonal Boundary


Medium: journal article
Language(s): English
Published in: Civil Engineering Journal, , n. 3, v. 6
Page(s): 512-522
DOI: 10.28991/cej-2020-03091487

The governing differential equations of the bending problem of simply supported shallow spherical shells on Winkler foundation are simplified to an independent equation of radial deflection. The independent equation of radial deflection is decomposed to two Laplace operators by intermediate variable. The R-function theory is applied to describe a shallow spherical shell on Winkler foundation with concave boundary, and then a quasi-Green’s function is established by using the fundamental solution and the normalized boundary equation. The quasi-Green’s function satisfies the homogeneous boundary condition of the problem. The Laplace operators of the problem are reduced to two simultaneous Fredholm integral equations of the second kind by the Green’s formula. The singularity of the kernel of the integral equation is eliminated by choosing a suitable form of the normalized boundary equation. The integral equations are discretized into the homogeneous linear algebraic equations to proceed numerical computing. The singular term in the discrete equation is eliminated by the integral method. Some numerical examples are given to verify the validity of the proposed method in calculating simple boundary conditions and polygonal boundary conditions. A comparison with the ANSYS finite element (FEM) solution shows a good agreement, and it demonstrates the feasibility and efficiency of the present method.

Copyright: © 2020 Shanqing Li, Hong Yuan, Xiongfei Yang, Huanliang Zhang, Qifeng Peng

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
  • Published on:
  • Last updated on: