0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Quantitative Reinforcement Analysis of Loess Slope with Anisotropy

Author(s):




Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2019
Page(s): 1-12
DOI: 10.1155/2019/6728101
Abstract:

The loess slope in east Gansu presents a large degree of anisotropy which should be considered both in the slope stability analysis and in the reinforcement design. To investigate the mechanical anisotropy presented in the loess soil, the undisturbed loess specimens are taken from the field with different sampling directions (α, defined as the angle between the normal direction of specimen and sedimentation direction). The direct shear tests are conducted on specimens of differentα, and it is found that the anisotropy has slight influence on the friction angle (φ), while the specimen withα=0°presents the smallest cohesion and the specimen withα=90°has the largest cohesion. The anisotropy behaviors have also been observed from the one-dimensional consolidation test and tension test. After that, the principle of point safety factor and the degree of reinforcement demand are introduced, and the method of quantitative reinforcement of anisotropic loess slope is proposed. The proposed approach is then implemented in the Fast Lagrangian Analysis of Continua in 3D (FLAC3D), and the point safety factor and the degree of reinforcement demand are investigated on slope with different slope ratios. It is found that the proposed approach could effectively be used to analyze the slope involving anisotropy through the comparison with the conventional limit equilibrium method. Meanwhile, the reinforcement zone and the reinforcement demanding of anisotropy slope are obtained, and relevant reinforcement design in practice is proposed.

Copyright: © 2019 Yuling Shi et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10314255
  • Published on:
    07/06/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine