0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Quantitative Evaluation of Top Coal Caving Methods at the Working Face of Extra-Thick Coal Seams Based on the Random Medium Theory

Author(s): ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-9
DOI: 10.1155/2021/5528067
Abstract:

Adopting an effective top coal caving method is the key to enhancing coal recovery and reducing gangue content for the fully mechanized top coal caving working face with extra-thick coal seams. In this study, the movement of coal particles generated during top coal caving is considered to follow a normal distribution. Then, the caving body and coal-rock settlement along the working face during the caving process are studied based on both the random media theory and probability theory. Accordingly, the optimal caving interval and caving sequences are determined, and a novel interval symmetrical coal caving method is proposed. The proposed method is systematically verified with results from physical similarity tests, and different caving methods are assessed by field tests. The results show the following: (1) The coal-rock settlement and the caving body demonstrate clear axial symmetrical features along the working face; the size of the caving body increases as the caving height grows and its shape turns progressively from semicircular to semielliptical with a lower foot of the coal-rock settlement. (2) The caving interval is derived using the sum of the radii of the coal-rock settlement curves formed by the two largest caving bodies. (3) The symmetrical caving approach provides a symmetrical space for the subsequent movement of the broken top coal, which enables a uniform development of the caving body. (4) Compared with the traditional sequential coal caving method with the same number of supports, the interval symmetrical caving method results in a 21.7% of coal production increase, 17% caving rate promotion, and a shortened caving time by 23.4%. (5) The interval symmetrical caving method is found to improve the controllability of the caving process at the fully mechanized top coal caving working face. In general, this work presents a theoretical approach to select the optimal caving methods for the fully mechanized caving working face in extra-thick coal seams for an improved production efficiency of the work face. The results of this study can also provide theoretical significance and referencing value for quantitative analyses of the coal caving methods for work faces with similar geological conditions.

Copyright: © 2021 Shi Jiulin et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10602048
  • Published on:
    17/04/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine