Punching Shear Capacity of Recycled Aggregate Concrete Slabs
Author(s): |
Satjapan Leelatanon
Thanongsak Imjai Monthian Setkit Reyes Garcia Boksun Kim |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 20 September 2022, n. 10, v. 12 |
Page(s): | 1584 |
DOI: | 10.3390/buildings12101584 |
Abstract: |
This article investigates the punching shear behavior of recycled aggregate concrete (RAC) two-way slabs. Ten 1500 mm × 1500 mm × 100 mm slabs were tested monotonically. Eight slabs were cast with RAC, whereas two control slabs were cast with natural aggregate concrete (NAC). The RAC incorporated coarse recycled concrete aggregate (RCA) at replacement levels of 25%, 50%, 75% and 100%. Two flexural reinforcement ratios (0.8% and 1.5%) were examined. The results show that the normalized punching shear strength of 100% RAC slabs decreased by 6.5% and 9% compared to NAC slabs for ρ = 1.5% and ρ = 0.8%, respectively. Doubling the amount of flexural reinforcement can increase the punching shear capacity of 100% RAC slabs by up to 45%. A punching shear database of 44 RAC slabs from literature and the 8 RAC slabs presented in this study revealed that the punching shear strength of RAC slabs predicted by ACI 318 was conservative, except for slabs with low reinforcement ratios (<0.6%). The punching shear strength predicted by Eurocode 2 gave more conservative results for all levels of RCA replacement and all flexural reinforcement ratios. A yield-line analysis also showed that the failure mode of the RAC slabs was controlled by punching shear. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
4.76 MB
- About this
data sheet - Reference-ID
10699885 - Published on:
11/12/2022 - Last updated on:
10/05/2023