0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A proof of concept for reliability aware analysis of junctionless negative capacitance FinFET-based hydrogen sensor

Author(s): ORCID
ORCID
ORCID

ORCID
Medium: journal article
Language(s): English
Published in: Smart Materials and Structures, , n. 3, v. 33
Page(s): 035010
DOI: 10.1088/1361-665x/ad2028
Abstract:

This work demonstrates the reliability-aware analysis of the Junctionless negative capacitance (NC) FinFET employed as a hydrogen (H2) gas sensor. Gate stacking of the ferroelectric (FE) layer induces internal voltage amplification owing to the NC property, thus, improving the sensitivity of the baseline junctionless FinFET. A well-calibrated TCAD model is used to investigate the sensing characteristics of the proposed FinFET-based H2 sensor by employing the palladium (Pd) metallic gate as a sensing element. The mechanism involves the transduction of H2 gas molecules over the metal gate; due to the diffusion process, some atomic hydrogen diffuses into the metal. The H2 gas absorption at the metal surface causes a dipole layer formation at the gate and oxide interface, which changes the metal gate work function. As a result, this change in the work function can be used as a sensing parameter of the proposed gas sensor. Further, the threshold voltage and other electrical characteristics, such as output conductance, transconductance, and drain current are examined for sensitivity analysis for both NC and without NC JL FinFET at different pressure ranges, keeping the temperature constant (i.e. 300 K). The device variation, i.e. Fin thickness, Fin height, doping and thickness of HfO2 ferroelectric layer, etc, on sensor sensitivity has been evaluated through extensive simulation. This paper also presents a detailed investigation of the sensor’s reliability in terms of work function variation, random dopant fluctuation, trap charges, and device aging, i.e. end of a lifetime. At last, the acquired results are compared with earlier reported data, which justifies the profound significance of the proposed junctionless negative capacitance FinFET-based H2 gas sensor.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1088/1361-665x/ad2028.
  • About this
    data sheet
  • Reference-ID
    10758219
  • Published on:
    15/03/2024
  • Last updated on:
    15/03/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine