0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Project Data Categorization, Adoption Factors, and Non-Functional Requirements for Blockchain Based Digital Twins in the Construction Industry 4.0

Author(s): ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 11
Page(s): 626
DOI: 10.3390/buildings11120626
Abstract:

As key technologies of the fourth industrial revolution, blockchain and digital twins have great potential to enhance collaboration, data sharing, efficiency, and sustainability in the construction industry. Blockchain can improve data integrity and enhance trust in the data value chain throughout the entire lifecycle of projects. This paper aims to develop a novel theoretical framework for the adoption of environmentally sustainable blockchain-based digital twins (BCDT) for Construction Industry (CI) 4.0. The paper identifies which key data from construction projects lifecycle should be anchored in BCDTs to benefit CI 4.0 and the environment. The paper also identifies key factors and non-functional requirements necessary for the adoption of BCDTs in a decentralized and sustainable CI 4.0. At first, a content analysis of the literature allowed the identification of which data from projects lifecycle would benefit from blockchain technology (BCT) adoption and what the key factors and non-functional requirements necessary for the adoption of BCDT in the CI4.0 are. Furthermore, the analysis of structured interviews and online survey permitted to firstly validate the hypotheses raised from the literature and to offer a novel framework for BCDT of CI 4.0 in the context of the circular economy (CE). The findings are that (1) the key project lifecycle data relevant for BCDTs relate to the BIM dimensions (3D, 4D, 5D, 6D, 7D, and 8D) and a new dimension called the contractual dimension (cD) is also proposed. (2) Ecosystems of BCDTs should embrace a novel form of collaboration that is decentralized and presented as Level 4 maturity for BCDTs. This new level of maturity leverages distributed blockchain networks to enhance collaboration, processes automation with smart contracts, and data sharing within a decentralized data value chain. Finally (3), the main non-functional requirements for BCDTs are security, privacy, interoperability, data ownership, data integrity, and the decentralization and scalability of data storage. With the proposed framework including the BCDT dimensions, the Maturity Level 4, and the key non-functional requirements, this paper provides the building blocks for industry practitioners to adopt BCDTs. This is promising for CI 4.0 to embrace a paradigm shift towards decentralized ecosystems of united BCDTs where trust, collaboration, data sharing, information security, efficiency, and sustainability are improved throughout the lifecycle of projects and within a decentralized CE (DCE).

Copyright: © 2021 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10646918
  • Published on:
    10/01/2022
  • Last updated on:
    10/01/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine