Probability Model of Hangzhou Bay Bridge Vehicle Loads Using Weigh-in-Motion Data
Author(s): |
Dezhang Sun
Xu Wang Bin Chen Baitao Sun |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Shock and Vibration, 2015, v. 2015 |
Page(s): | 1-10 |
DOI: | 10.1155/2015/576083 |
Abstract: |
To study the vehicle load characteristics of bay bridges in China, especially truck loads, we performed a statistical analysis of the vehicle loads on Hangzhou Bay Bridge using more than 3 months of weigh-in-motion data from the site. The results showed that when all the vehicle samples were included in the statistical analysis, the histogram of the vehicles exhibited a multimodal distribution, which could not be fitted successfully by a familiar single probability distribution model. When the truck samples were analyzed, a characteristic multiple-peaked distribution with a main peak was obtained. The probability distribution of all vehicles was fitted using a weighting function with five normal distributions and the truck loads were modeled by a single normal distribution. The results demonstrated the good fits with the histogram. The histograms of different time periods were also analyzed. The results showed that the traffic mainly comprised two-axle small vehicles during the rush hours in the morning and the evening, and the histogram could be fitted approximately using three normal distribution functions. And the maximum value distributions of vehicles during the design life of the bay bridge were predicted by maximum value theory. |
Copyright: | © 2015 Dezhang Sun, Xu Wang, Bin Chen, Baitao Sun |
License: | This creative work has been published under the Creative Commons Attribution 3.0 Unported (CC-BY 3.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
1.98 MB
- About this
data sheet - Reference-ID
10676352 - Published on:
28/05/2022 - Last updated on:
01/06/2022