0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Probabilistic Shear Strength Prediction for Deep Beams Based on Bayesian-Optimized Data-Driven Approach

Author(s):


Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 13
Page(s): 2471
DOI: 10.3390/buildings13102471
Abstract:

To ensure the safety of buildings, accurate and robust prediction of a reinforced concrete deep beam’s shear capacity is necessary to avoid unpredictable accidents caused by brittle failure. However, the failure mechanism of reinforced concrete deep beams is very complicated, has not been fully elucidated, and cannot be accurately described by simple equations. To solve this issue, machine learning techniques have been utilized and corresponding prediction models have been developed. Nevertheless, these models can only provide deterministic prediction results of the scalar type, and the confidence level is uncertain. Thus, these prediction results cannot be used for the design and assessment of deep beams. Therefore, in this paper, a probabilistic prediction approach of the shear strength of reinforced concrete deep beams is proposed based on the natural gradient boosting algorithm trained on a collected database. A database of 267 deep beam experiments was utilized, with 14 key parameters identified as the inputs related to the beam geometry, material properties, and reinforcement details. The proposed NGBoost model was compared to empirical formulas from design codes and other machine learning methods. The results showed that the NGBoost model achieved higher accuracy in mean shear strength prediction, with an R2 of 0.9045 and an RMSE of 38.8 kN, outperforming existing formulas by over 50%. Additionally, the NGBoost model provided probabilistic predictions of shear strength as probability density functions, enabling reliable confidence intervals. This demonstrated the capability of the data-driven NGBoost approach for robust shear strength evaluation of RC deep beams. Overall, the results illustrated that the proposed probabilistic prediction approach dramatically surpassed the current formulas adopted in design codes and machine learning models in both prediction accuracy and robustness.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10744684
  • Published on:
    28/10/2023
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine