Probabilistic Life-Cycle Assessment of Service Life Extension on Renovated Buildings under Seismic Hazard
Author(s): |
Roberta Di Bari
Andrea Belleri Alessandra Marini Rafael Horn Johannes Gantner |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 25 February 2020, n. 3, v. 10 |
Page(s): | 48 |
DOI: | 10.3390/buildings10030048 |
Abstract: |
Existing buildings can reach a performance enhancement and extend their nominal service life through renovation measures such as seismic rehabilitation. In particular, when buildings have almost exhausted their service life, seeking an optimal solution should consider whether costs and environmental effects are worthwhile, or new construction is preferred. In this paper, a methodology to consider seismic hazard into probabilistic approaches for life-cycle analyses is presented considering the possibility of structural enhancement over an extended building lifespan. A life-cycle-based decision support tool for building renovation measures is developed and applied to a selected case study. Unlike standard “static” analyses, which in this work show shortcomings by underestimating impacts of vulnerable buildings, such an approach brings out environmental and economic advantages of retrofit measures designed to improve the structural performance. |
Copyright: | © 2020 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
4.87 MB
- About this
data sheet - Reference-ID
10416654 - Published on:
17/03/2020 - Last updated on:
02/06/2021