0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Probabilistic degradation modelling of circular tunnels assembled from segmental linings

Author(s):



Medium: journal article
Language(s): English
Published in: Structural Concrete, , n. 2, v. 17
Page(s): 257-273
DOI: 10.1002/suco.201400122
Abstract:

Cross-section deformation is considered an important indicator for assessing the structural safety in the inspection and maintenance of tunnels. The way it increases over its lifetime is an indication of the gradual degradation in structural performance. In order to take timely and appropriate maintenance measures before the tunnel reaches the ultimate limit state, a predictive degradation model of cross-section deformation should be established. In this paper, a probabilistic degradation model is developed based on an average uniform rigidity ring model for circular tunnels assembled from segmental linings. By considering the uncertainties and relevant performance of parameters that vary over time, the model is able to supply probabilistic and time-dependent predictions. Critical parameters are identified and the model is simplified following sensitivity analysis. Based on the measuring data, a Bayesian updating method is proposed to improve the input assumptions and predictions of the model. This research provides a perspective on the degradation modelling of the cross-section deformation of circular tunnels assembled from segmental linings and methods for improving the proposed predictive model.

Keywords:
sensitivity analysis Bayesian updating circular tunnel cross-section deformation degradation modelling
Available from: Refer to publisher
Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1002/suco.201400122.
  • About this
    data sheet
  • Reference-ID
    10073259
  • Published on:
    27/06/2016
  • Last updated on:
    27/06/2016
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine