0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

The Price Premium in Green Buildings: A Spatial Autoregressive Model and a Multi-Criteria Optimization Approach

Author(s): ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 2, v. 13
Page(s): 276
DOI: 10.3390/buildings13020276
Abstract:

The energy issue has given rise to a prolific research field, which branches into several strands. One of these strands focuses on the role played by building energy features in shaping property prices. Indeed, market players are expected to show a higher willingness to pay for building units characterized by higher energy performance. The study of the so-called price premium for building energy efficiency has flourished in the last decade or so; plenty of evidence is now available concerning its occurrence, although its magnitude is still debated. The literature relies on the methodological frameworks of statistical modeling and multiple regression, primarily employing hedonic price models. Lately, spatial autoregressive models have also been adopted. Here, we propose to deal with estimation of the price premium by adopting an innovative perspective. In particular, we use a methodological framework in which regression models are complemented with a multi-criteria optimization approach. Using a spatial autoregressive model first, and with D as the reference energy rating band, we find the following price premiums: 55% for A4, 42% for A3 to A, 20% for B or C, −14% for F, and −29% for G. The multi-criteria optimization approach proves efficient in estimating the price premium. The estimates above are essentially confirmed: the results converge for all the energy rating bands except for G.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10712310
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine