Preloading Model on Soft Soil with Inclusion Thermal Induction Vertical and Incline Types
Author(s): |
Maraden Panjaitan
A. R. Djamaluddin Tri Harianto A. B. Muhiddin |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Civil Engineering Journal, 1 June 2021, n. 6, v. 7 |
Page(s): | 998-1007 |
DOI: | 10.28991/cej-2021-03091705 |
Abstract: |
Soft clay has a relatively low subgrade bearing capacity. The aim is to obtain physical values, mineralogy, mechanical strength values, values for reduction. The research method used is preloading in a test tube measuring 50×70×150 cm. Each cycle of preloading and thermal induction used a fixed load of 0.015 kg/cm². Thermal induction is given vertically and obliquely with temperature variations of 100, 200, 300, and 400 °C. The main observation point is a distance of 15 cm from the center of the induction. At 400 °C inclined induction, the water content is 17.36% (from the initial water content of 59.07%), the soil cohesion is 21.75. kN/m², the value of unconfined compressive strength is 67.72 kN/m², the highest modulus of elasticity is 4593 kN/m², and the decrease is 5.13 cm. XRD, SEM, EDS results before heating showed mineralogy 0 (65.06%), Ca (13.30%), Na (3.64%), Mg (2.15%), Al (6.63%), Si (8.52%), Sn (0.70%) and did not change significantly after heating at 400 °C. The results after heating included 0 (58.39%), Ca (14.09%), Na (0.72%), Mg (1.16%), Al (6.63%), Si (14.72%), Sn (2.54%). The novelty obtained is to change very soft conditions became medium conditions. |
Copyright: | © 2021 Maraden Panjaitan, A. R. Djamaluddin, Tri Harianto, A. B. Muhiddin |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
1.1 MB
- About this
data sheet - Reference-ID
10610615 - Published on:
08/06/2021 - Last updated on:
10/06/2021