0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Preliminary Study of Interactive Local Buckling for Aluminium Z-Section

Author(s): ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 7, v. 14
Page(s): 1959
DOI: 10.3390/buildings14071959
Abstract:

In this study, a theoretical investigation is conducted on the local buckling resistance of aluminium Z-sections subjected to uniform compression. A method is developed based on the J2 deformation theory of plasticity (DTP) to calculate the critical buckling load within the elastic–plastic range. The deformation theory of plasticity relies on the assumption that the strain state is uniquely defined by the stress state. Consequently, it serves as a specific path-independent non-linear constitutive model. The study commences with the elastoplastic differential equation for a single compressed plate. By incorporating the boundary conditions and the interaction between plate elements, the interactive buckling load is determined. An example is provided to illustrate the incremental nature of the numerical procedure. Additionally, numerical analyses are performed to examine the impact of the strain-hardening properties of aluminium alloys on local buckling resistance. In the final stage, the theoretical results are compared with those found in existing scientific literature. This comparison serves to evaluate the accuracy of the DTP procedure.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10795121
  • Published on:
    01/09/2024
  • Last updated on:
    01/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine