0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Preliminary Research on Outdoor Thermal Comfort Evaluation in Severe Cold Regions by Machine Learning

Author(s):





Medium: journal article
Language(s): English
Published in: Buildings, , n. 1, v. 14
Page(s): 284
DOI: 10.3390/buildings14010284
Abstract:

The thermal comfort evaluation of the urban environment arouses widespread concern among scholars, and research in this field is mostly based on thermal comfort evaluation indexes such as PMV, PET, SET, UTCI, etc. These thermal comfort index evaluation models are complex in the calculation process and poor in operability, which makes it difficult for people who lack a relevant knowledge background to understand, calculate, and apply them. The purpose of this study is to provide a simple, efficient, and easy-to-operate outdoor thermal comfort evaluation model for severe cold areas in China using a machine learning method. In this study, the physical environment parameters are obtained by field measurement, and individual information is obtained by a field questionnaire survey. The applicability of four machine learning models in outdoor thermal comfort evaluation is studied. A total of 320 questionnaires are collected. The results show that the correlation coefficients between predicted values and voting values of the extreme gradient lifting model, gradient lifting model, random forest model, and neural network model are 0.9313, 0.7148, 0.9115, and 0.5325, respectively. Further analysis of the extreme gradient model with the highest correlation coefficient shows that individual factors (such as residence time, distance between hometown and residence, clothing, age, height, and weight) and environmental factors (such as air humidity (RH), wind speed (v), air temperature (Ta), and black bulb temperature (Tg)) have different influences on thermal comfort evaluation. In summary, using a machine learning method to evaluate outdoor thermal comfort is simpler, more direct, and more efficient, and it can make up for the lack of consideration of complex individual factors in the evaluation method of thermal comfort index. The results have reference value and application value for the research of outdoor thermal comfort evaluation in severe cold areas of China.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10760237
  • Published on:
    23/03/2024
  • Last updated on:
    25/04/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine