0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Prediction on Water-flowing Fractured Region Based on 3D Simulation Technology

Author(s):



Medium: journal article
Language(s): English
Published in: The Open Civil Engineering Journal, , n. 1, v. 10
Page(s): 349-360
DOI: 10.2174/1874149501610010349
Abstract:

Caving zone and fractured zone both appear in the Changzhi Basin in China as the a large number of coal are mined from the area. Based on ore cluster mining and on GIS (Geographic Information System) technology, in the paper, it combines the 3-D (three dimensional) simulation technology and adopts the spacial interpolation method to develop the 3-D stratigraphic model of the studied region, the 3D stratigraphic model and the division idea which is applicable for the study region are obtained. The virtual drilling technology is applied to obtain precise stratigraphic data and calculate the heights of the caving zone and fractured zone of Changzhi Basin, their relative locations to the overlying aquifer and the water-flowing fractured region of influence based on computer-simulated data are both analyzed. In addition, it also puts forward the concept of effective water-flowing fractured rate, which lays a solid foundation for further study on the heterogeneous evolution of the spatial structure of regional aquifers after the coal mining which also can provide a data support for future studies on the heterogeneous evolution features of water-bearing media.

Copyright: © 2016 Cai Zi-Zhao et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10175380
  • Published on:
    30/12/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine