0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Prediction of the Shear Resistance of Headed Studs Embedded in Precast Steel–Concrete Structures Based on an Interpretable Machine Learning Method

Author(s):

ORCID
ORCID



Medium: journal article
Language(s): English
Published in: Buildings, , n. 2, v. 13
Page(s): 496
DOI: 10.3390/buildings13020496
Abstract:

Headed shear studs are an essential interfacial connection for precast steel–concrete structures to ensure composite action; hence, the accurate prediction of the shear capacity of headed studs is of pivotal significance. This study first established a worldwide dataset with 428 push-out tests of headed shear studs embedded in concrete with varied strengths from 26 MPa to 200 MPa. Five advanced machine learning (ML) models and three widely used equations from design codes were comparatively employed to predict the shear resistance of the headed studs. Considering the inevitable data variation caused by material properties and load testing, the isolated forest algorithm was first used to detect the anomaly of data in the dataset. Then, the five ML models were established and trained, which exhibited higher prediction accuracy than three existing design codes that were widely used in the world. Compared with the equations from AASHTO (the one that has the best prediction accuracy among design specifications), the gradient boosting decision tree (GBDT) model showed an 80% lower root mean square error, 308% higher coefficient of determination, and 86% lower mean absolute percent error. Lastly, individual conditional expectation plots and partial dependence plots showed the relationship between the individual parameters and the predicted target based on the GBDT model. The results showed that the elastic modulus of concrete, the tensile strength of the studs, and the length–diameter ratio of the studs influenced most of the shear capacity of shear studs. Additionally, the effect of the length–diameter ratio has an upper limit which depends on the strength of the studs and concrete.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10712697
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine