The Prediction of Pervious Concrete Compressive Strength Based on a Convolutional Neural Network
Author(s): |
Gaoming Yu
Senlai Zhu Ziru Xiang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 27 March 2024, n. 4, v. 14 |
Page(s): | 907 |
DOI: | 10.3390/buildings14040907 |
Abstract: |
To overcome limitations inherent in existing mechanical performance prediction models for pervious concrete, including material constraints, limited applicability, and inadequate accuracy, this study employs a deep learning approach to construct a Convolutional Neural Network (CNN) model with three convolutional modules. The primary objective of the model is to precisely predict the 28-day compressive strength of pervious concrete. Eight input variables, encompassing coarse and fine aggregate content, water content, admixture content, cement content, fly ash content, and silica fume content, were selected for the model. The dataset utilized for both model training and testing consists of 111 sample sets. To ensure the model’s coverage within the practical range of pervious concrete strength and to enhance its robustness in real-world applications, an additional 12 sets of experimental data were incorporated for training and testing. The research findings indicate that, in comparison to the conventional machine learning method of Backpropagation (BP) neural networks, the developed CNN prediction model in this paper demonstrates a higher coefficient of determination, reaching 0.938, on the test dataset. The mean absolute percentage error is 9.13%, signifying that the proposed prediction model exhibits notable accuracy and universality in predicting the 28-day compressive strength of pervious concrete, regardless of the materials used in its preparation. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.68 MB
- About this
data sheet - Reference-ID
10773326 - Published on:
29/04/2024 - Last updated on:
05/06/2024