A Prediction Method for the California Bearing Ratio of Soil-Rock Mixture Based on the Discrete Element Method and CT Scanning
Author(s): |
Xiaoping Ji
Jia Li Zhifei Cui Shouwei Li Yue Xiong Jianming Hu Yingjun Jiang Chunshun Zhang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2020, v. 2020 |
Page(s): | 1-12 |
DOI: | 10.1155/2020/9794756 |
Abstract: |
Because of the large amount of gravel with particle sizes over 40 mm in the soil-rock mixture (SRM), it is impossible to determine its California Bearing Ratio (CBR) via the indoor test method, which is a key parameter for designing the backfill in underground mined cavities or the road subgrade constructed with SRM. In this paper, X-ray computed tomography (CT) scanning and 3D reconstruction technology were used to construct the 3D structure of SRM particles with a particle size greater than 5 mm. Based on the vertical vibration test method (VVTM) and PFC3D, the numerical simulation method (NSM-CBR) of SRM was established. The CBR of the SRM with a maximum particle size over 40 mm (SRM-G) was studied by NSM-CBR, and the effects of factors such as maximum particle size, soil content, and large-size particle content (d ≥ 40 mm) on the CBR were investigated via NSM-CBR. Based on the laboratory tests and NSM-CBR, the prediction model and the determining method of CBR of SRM-G were established and verified. The results show that the maximum deviation between the CBR obtained from NSM-CBR and laboratory tests was 7.4%. The CBR of SRM-G decreases linearly with the increase in soil content and increases with the increase in maximum particle size and large-size particle content. The practical project shows that the maximum deviation between the predictive and measured values of the CBR of SRM-G was less than 1.5%, indicating that the prediction model and the method established in this paper have high reliability. |
Copyright: | © Xiaoping Ji et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
5.04 MB
- About this
data sheet - Reference-ID
10444065 - Published on:
05/10/2020 - Last updated on:
02/06/2021