0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Prediction Compressive Strength of Concrete Containing GGBFS using Random Forest Model

Author(s): ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-12
DOI: 10.1155/2021/6671448
Abstract:

Improvement of compressive strength prediction accuracy for concrete is crucial and is considered a challenging task to reduce costly experiments and time. Particularly, the determination of compressive strength of concrete using ground granulated blast furnace slag (GGBFS) is more difficult due to the complexity of the composition mix design. In this paper, an approach using random forest (RF), which is one of the powerful machine learning algorithms, is proposed for predicting the compressive strength of concrete using GGBFS. The RF model is first evaluated to determine the best architecture, which constitutes 500 growth trees and leaf size of 1. In the next step, the evaluation of the model is conducted over 500 simulations considering the effect of random sampling. Finally, the best prediction results are given in function of statistical measures such as the correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE), respectively, which are 0.9729, 4.9585, and 3.9423 for the testing dataset. The results show that the RF algorithm is an excellent predictor and practically used for engineers to reduce experimental cost.

Copyright: © Hai-Van Thi Mai et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10607771
  • Published on:
    15/05/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine