0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Prediction and Monitoring of Underwater Sound Levels from the Implosion of a Reinforced Concrete Bridge Pier

Author(s):


Medium: journal article
Language(s): English
Published in: Transportation Research Record: Journal of the Transportation Research Board, , n. 1, v. 2628
Page(s): 47-57
DOI: 10.3141/2628-06
Abstract:

After the completion of the new east span of the San Francisco–Oakland Bay Bridge in California, large concrete piers of the old span needed to be demolished. To consider using controlled blasting for this action, hydroacoustic levels were predicted and monitored with regard to specified fish and marine mammal criteria. The metrics included peak pressure and sound exposure levels at distances from 25 to more than 4,000 ft from the pier. For peak pressure, the measured levels were slightly higher than estimated, although for sound exposure levels, the measured levels were somewhat lower than estimated because of the effect of surface reflection. A blast attenuation system consisting of a wide bubble stream was used to minimize the hydroacoustic levels in the water surrounding the pier. The implosion event consisted of 588 individual charge detonations ranging from 35 to 21 lb (15.9 to 9.5 kg/delay) spaced 9 ms apart. Although there were 135 individual detonations of the larger 35-lb charges, the highest peak pressures varied in level by 10 to 15 dB during the course of the implosion. The methods for predicting the levels, measured results, analysis of data, and performance of the blast attenuation system are reviewed.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.3141/2628-06.
  • About this
    data sheet
  • Reference-ID
    10778001
  • Published on:
    12/05/2024
  • Last updated on:
    12/05/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine