Predicting Tunnel Squeezing Using Multiclass Support Vector Machines
Author(s): |
Yang Sun
Xianda Feng Lingqiang Yang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, 2018, v. 2018 |
Page(s): | 1-12 |
DOI: | 10.1155/2018/4543984 |
Abstract: |
Tunnel squeezing is one of the major geological disasters that often occur during the construction of tunnels in weak rock masses subjected to high in situ stresses. It could cause shield jamming, budget overruns, and construction delays and could even lead to tunnel instability and casualties. Therefore, accurate prediction or identification of tunnel squeezing is extremely important in the design and construction of tunnels. This study presents a modified application of a multiclass support vector machine (SVM) to predict tunnel squeezing based on four parameters, that is, diameter (D), buried depth (H), support stiffness (K), and rock tunneling quality index (Q). We compiled a database from the literature, including 117 case histories obtained from different countries such as India, Nepal, and Bhutan, to train the multiclass SVM model. The proposed model was validated using 8-fold cross validation, and the average error percentage was approximately 11.87%. Compared with existing approaches, the proposed multiclass SVM model yields a better performance in predictive accuracy. More importantly, one could estimate the severity of potential squeezing problems based on the predicted squeezing categories/classes. |
Copyright: | © 2018 Yang Sun et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
1.58 MB
- About this
data sheet - Reference-ID
10176760 - Published on:
30/11/2018 - Last updated on:
02/06/2021