0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Predicting Compressive Strength of Blast Furnace Slag and Fly Ash Based Sustainable Concrete Using Machine Learning Techniques: An Application of Advanced Decision-Making Approaches

Author(s):
ORCID
ORCID
ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 7, v. 12
Page(s): 914
DOI: 10.3390/buildings12070914
Abstract:

The utilization of waste industrial materials such as Blast Furnace Slag (BFS) and Fly Ash (F. Ash) will provide an effective alternative strategy for producing eco-friendly and sustainable concrete production. However, testing is a time-consuming process, and the use of soft machine learning (ML) techniques to predict concrete strength can help speed up the procedure. In this study, artificial neural networks (ANNs) and decision trees (DTs) were used for predicting the compressive strength of the concrete. A total of 1030 datasets with eight factors (OPC, F. Ash, BFS, water, days, SP, FA, and CA) were used as input variables for the prediction of concrete compressive strength (response) with the help of training and testing individual models. The reliability and accuracy of the developed models are evaluated in terms of statistical analysis such as R2, RMSE, MAD and SSE. Both models showed a strong correlation and high accuracy between predicted and actual Compressive Strength (CS) along with the eight factors. The DT model gave a significant relation to the CS with R2 values of 0.943 and 0.836, respectively. Hence, the ANNs and DT models can be utilized to predict and train the compressive strength of high-performance concrete and to achieve long-term sustainability. This study will help in the development of prediction models for composite materials for buildings.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10688499
  • Published on:
    13/08/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine