0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Point Estimation-Based Dynamic Reliability Analysis of Beam Bridges under Seismic Excitation Considering Uncertain Parameters

Author(s):


Medium: journal article
Language(s): English
Published in: Buildings, , n. 7, v. 14
Page(s): 2003
DOI: 10.3390/buildings14072003
Abstract:

Beam bridges, as the primary structural form of medium and small-sized bridges, are extensively utilized for road and railway crossings over rivers and valleys. Ensuring their reliability during earthquakes is crucial not only for maintaining traffic flow but also for mitigating the seismic impact on the economy and society. Considering earthquake intensity and uncertain parameters, this paper proposes an innovative method for assessing the seismic reliability of simply-supported beam bridges under three different levels of seismic design: minor, moderate, and major earthquakes. The proposed method first estimates the probability of encountering three typical earthquake intensities during the design life of simply-supported beam bridges based on crowd intensity, benchmark intensity, and major earthquake intensity. It then introduces uncertain parameters and employs the point estimation method to calculate the probability of bridge passage under specific earthquake intensities. Finally, it combines these earthquake intensities to calculate the overall seismic reliability of simply-supported beam bridges. The effectiveness and efficiency of this method are demonstrated through calculations for a three-span, double-degree-of-freedom simply-supported beam bridge, and validated using Monte Carlo simulations. This research provides solid theoretical support for seismic assessment, design, and intensity-based reliability analysis of simply-supported beam bridges.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10795540
  • Published on:
    01/09/2024
  • Last updated on:
    01/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine