Plastic Zone Radius Criteria for Crack Propagation Angle Evaluated with Experimentally Obtained Displacement Fields
Author(s): |
Jorge Guillermo Díaz-Rodríguez
Alberto David Pertúz-Comas Oscar Rodolfo Bohórquez-Becerra Arthur Martins Barbosa Braga Darío Prada-Parra |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 1 February 2024, n. 2, v. 14 |
Page(s): | 495 |
DOI: | 10.3390/buildings14020495 |
Abstract: |
The monitoring and maintenance of cracked structures are generally carried out using structural integrity assessments. The plastic zone (PZ) crack path (CP) criteria state that a crack grows in a specific direction when the radius of the plastic zone ahead of the crack tip reaches a minimum value. The PZ can be evaluated using stress intensity factors (SIFs). The SIFs under mixed-mode loading were extracted from the literature from three samples: two single edge notch tension (SENT) samples (E = 2.5 GPa, v = 0.38) made from polycarbonate and one modified compact test (C(T)) sample made from low-carbon steel (E = 200 GPa, v = 0.3). In addition, the CP angle was evaluated for the W and R criteria with experimental data, which included non-linear effects such as fatigue-induced plasticity, crack roughness, and debris. It was found that both can predict the CP for lateral cracks in both tested materials and monotonic and cyclic load when the mode mixity does not change considerably from one crack length to the next or goes beyond 0.2. Moreover, the R criterion exhibited an error as high as 1.7%, whereas the W criterion showed a 6% error on the last crack length for the low-carbon steel sample under cyclic load, which had a 100% increase in mode mixity. Finally, the applicability of LEFM was checked, while the CP was sought by finding the size of the PZ. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.79 MB
- About this
data sheet - Reference-ID
10773717 - Published on:
29/04/2024 - Last updated on:
05/06/2024